sábado, 11 de diciembre de 2010

Programación dinámica :: Problema de Inventario

| 7 Comments
Aquí le va otro modelo de  problema de programación dinámica, Haver

**este problema es del ppt  que esta en la zona de descargas






Una empresa debe decidir su política de producción e inventario para los próximos tres meses. La empresa ha adquirido algunos compromisos de entrega para estos meses: 3, 2, y 4 unidades respectivamente. En el proceso productivo se incurre en algunos costos que están asociados con la producción y el almacenamiento. Estos se indican en la siguiente tabla


El problema consiste en decidir “cuanto” producir en cada mes, tomando en cuenta que lo que quede en el almacén será lo que produce menos la demanda. , esto lo tendré que decidir , por eso  tendré que tomar en cuenta lo que tenga en almacén.

Entonces  seria...

Xi: cantidad de unidades a producir (cuanto producir por mes)
Yi: inventario al indicio del periodo (lo que tengo en almacén)
Di: demanda en el mes i

El modelo seria:
“minimizar la sumatoria de lo que me va costar producir (estar en función del mes), y lo que me va costar mantener en inventario (estar en función del mes)”

min.  sumatoria{ CP( xi ) + CI( yi ) }
 
> Sumatoria {10(x1) + 15(x2) + 20(x3) + (y1])+ 3(Y2)+2(Y3)}

S.a.
 Sumatoria (Xi) = 9

Yi, Xi >=0, para todo i de 1 a 3

Condiciones de borde: y1=0, y4=0

K=3

** 3 etapas, es por mes

Función de transformación

Yi+1  =   Yi   + Xi    -  Di

** Lo que tenga en almacén el siguiente mes, será lo que produje mas lo que tenia en inventario menos la demanda de dicho mes

Función de recursión

Fi (Yi) = min. { CP( xi ) + CI( yi+1 ) + F i+1 (  Yi+1 )  }

** el detalle tal vez solo sea CI( yi+1 )  , si se fijan si estamos en el mes i , el soto dem anterior en almacén , no será en función de Yi ( lo productos que tengo al comenzó del mes ) , porque va Acer una demanda , entonces lo que quede en almacén será Yi+1 ( los productas que resultan después de quitar la drenad , ósea lo que sobre , eso es lo que se va quedar en almacén )

Capichi XD.


Bien ahora a desarrollar….

#3 Mes

OBS: lo que tengo en almacén mas lo que produzco no debe superar a ala demanda, pues no debe pasarse (sobraría, no debe sobrar), si es menos no satifaceria al demanda, entonces, lo máximo que tendría en almacén es 4 y los mínimo 0.


Ojo con la funciona para calcular el costo, esta seria:
F3( y3 ) = 20(x3) + 2( y3 + x3 -2 )  + F4( y4 )  >>>> F4( y4 )=0






#2 Mes

OBS: en este caso mi limite es la demanda que es de dos (al igual que el caso anterior), además de la demanda del mes posterior, porque es probable que el siguiente mes nos convenga no producir nada, y lo mínimo es la demanda de este mes.

La función seria:
F2 (y2) = 15(x2) + 3(y2 + x2 -4)  + F3 (y3) 





#1 Mes 


OBS:   igual que los caos anteriores, mínimo = 3, máximo = 9 (suma de las demandas)
Ojo: en la primera etapa no tiene nada en almacén =0, pero otros problemas varían esto, solo se le cambian de valor y ya.
F1 (y1) = 10(x1) + 1(y1 + x1 -3)  + F3 (y2) 





Solución:



Baa… tanto para eso (-_-)

Jeje  si se fijan la repuesta era obvia, comparando  los costos, almacén de 1 2 3, y de producción de 10 15 20, la diferencia es mucha, así que me conviene producir todo el primer mes. Alguna duda , pos comenten :P

 


Tags :

7 comentarios:

  1. Alguna duda estoy mas cabeza puerco que quien sabe que...

    ResponderEliminar
  2. LOS VALORES DE LAS TABLAS NO DAN RESOLVIENDO LA RECURSIVA DEL SEGUNDO MES ESO ESTA MALO...

    ResponderEliminar
  3. F2 (y2) = 15(x2) + 3(y2 + x2 -4) + F3 (y3)
    vea pacho se equivo en la demanda que resta es decir -4 es -2 ya que es la demanda del mes donde estoy parado pacho, si usted no tiene las suficientes reservas intelectuales para resolver ese ejercicio pacho mejor no lo haga

    ResponderEliminar
  4. vea pacho otro error en el mes 2 cuando y2=0 y x2=5 eso da 106 pacho obviamente con esta recursiva

    F2 (y2) = 15(x2) + 3(y2 + x2 -2) + F3 (y3)

    ResponderEliminar
  5. Pos ahi hay detalles en la solucion. Valdría la pena mejorar y nuevamente publicar. Chao, Chao

    ResponderEliminar
  6. donde puedo conseguir el ejercicio resuelto correctamente?? me urge para estudiar!!! =( ayuda plis!!

    ResponderEliminar